7z^2+7z-2=(8z+1)(z-2)

Simple and best practice solution for 7z^2+7z-2=(8z+1)(z-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7z^2+7z-2=(8z+1)(z-2) equation:



7z^2+7z-2=(8z+1)(z-2)
We move all terms to the left:
7z^2+7z-2-((8z+1)(z-2))=0
We multiply parentheses ..
7z^2-((+8z^2-16z+z-2))+7z-2=0
We calculate terms in parentheses: -((+8z^2-16z+z-2)), so:
(+8z^2-16z+z-2)
We get rid of parentheses
8z^2-16z+z-2
We add all the numbers together, and all the variables
8z^2-15z-2
Back to the equation:
-(8z^2-15z-2)
We add all the numbers together, and all the variables
7z^2+7z-(8z^2-15z-2)-2=0
We get rid of parentheses
7z^2-8z^2+7z+15z+2-2=0
We add all the numbers together, and all the variables
-1z^2+22z=0
a = -1; b = 22; c = 0;
Δ = b2-4ac
Δ = 222-4·(-1)·0
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{484}=22$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-22}{2*-1}=\frac{-44}{-2} =+22 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+22}{2*-1}=\frac{0}{-2} =0 $

See similar equations:

| x²-2x=0 | | 2(n+5)=−2 | | Yx5+5=3 | | 3/7=15/z | | 2/7x+1/21x+2x=31 | | x-11.18=14.75 | | 2n2+5n-25=0 | | -9h-+12h+40=22 | | 16x+23=3(4x+8)+4x-1 | | 15x+25-4x-1=35 | | F(x+3)=9x-4 | | C-15=17-c | | 4x+112=50 | | 41-6=x | | 3s+2=12=2s | | 6(6x-6)=36x-36 | | -8x+6x+3=5 | | 27+14s=7 | | 4=3a | | 8x+28=2x+154 | | 1/2+5x=x3/2 | | 3x+33=-24x | | 9+4m=30+8.5m | | 1/2(3m)(m)=6.75m^2 | | -20k+15k=-5 | | 19-3(2u+7)=4(2+u) | | 9a2-3a-8=0 | | 12(x-9)=-3-9= | | 60=|300−48t| | | c+-9=-13 | | 5(-7x+x)=6x+1/5 | | 3m+15=6 |

Equations solver categories